The Problem of Increasing Human Energy – Nikola Tesla


Besides fuel, there is abundant material from which we might eventually derive power. An immense amount of energy is locked up in limestone, for instance, and machines can be driven by liberating the carbonic acid through sulphuric acid or otherwise. I once constructed such an engine, and it operated satisfactorily.

But, whatever our resources of primary energy may be in the future, we must, to be rational, obtain it without consumption of any material. Long ago I came to this conclusion, and to arrive at this result only two ways, as before indicated, appeared possible—either to turn to use the energy of the sun stored in the ambient medium, or to transmit, through the medium, the sun’s energy to distant places from some locality where it was obtainable without consumption of material. At that time I at once rejected the latter method as entirely impracticable, and turned to examine the possibilities of the former.

It is difficult to believe, but it is, nevertheless, a fact, that since time immemorial man has had at his disposal a fairly good machine which has enabled him to utilize the energy of the ambient medium. This machine is the windmill. Contrary to popular belief, the power obtainable from wind is very considerable. Many a deluded inventor has spent years of his life in endeavoring to “harness the tides,” and some have even proposed to compress air by tide- or wave-power for supplying energy, never understanding the signs of the old windmill on the hill, as it sorrowfully waved its arms about and bade them stop. The fact is that a wave- or tide-motor would have, as a rule, but a small chance of competing commercially with the windmill, which is by far the better machine, allowing a much greater amount of energy to be obtained in a simpler way. Wind-power has been, in old times, of inestimable value to man, if for nothing else but for enabling him, to cross the seas, and it is even now a very important factor in travel and transportation. But there are great limitations in this ideally simple method of utilizing the sun’s energy. The machines are large for a given output, and the power is intermittent, thus necessitating the storage of energy and increasing the cost of the plant.

A far better way, however, to obtain power would be to avail ourselves of the sun’s rays, which beat the earth incessantly and supply energy at a maximum rate of over four million horsepower per square mile. Although the average energy received per square mile in any locality during the year is only a small fraction of that amount, yet an inexhaustible source of power would be opened up by the discovery of some efficient method of utilizing the energy of the rays. The only rational way known to me at the time when I began the study of this subject was to employ some kind of heat- or thermodynamic-engine, driven by a volatile fluid evaporate in a boiler by the heat of the rays. But closer investigation of this method, and calculation, showed that, notwithstanding the apparently vast amount of energy received from the sun’s rays, only a small fraction of that energy could be actually utilized in this manner. Furthermore, the energy supplied through the sun’s radiations is periodical, and the same limitations as in the use of the windmill I found to exist here also. After a long study of this mode of obtaining motive power from the sun, taking into account the necessarily large bulk of the boiler, the low efficiency of the heat-engine, the additional cost of storing the energy and other drawbacks, I came to the conclusion that the “solar engine,” a few instances excepted, could not be industrially exploited with success.

Another way of getting motive power from the medium without consuming any material would be to utilize the heat contained in the earth, the water, or the air for driving an engine. It is a well-known fact that the interior portions of the globe are very hot, the temperature rising, as observations show, with the approach to the center at the rate of approximately 1 degree C. for every hundred feet of depth. The difficulties of sinking shafts and placing boilers at depths of, say, twelve thousand feet, corresponding to an increase in temperature of about 120 degrees C., are not insuperable, and we could certainly avail ourselves in this way of the internal heat of the globe. In fact, it would not be necessary to go to any depth at all in order to derive energy from the stored terrestrial heat. The superficial layers of the earth and the air strata close to the same are at a temperature sufficiently high to evaporate some extremely volatile substances, which we might use in our boilers instead of water. There is no doubt that a vessel might be propelled on the ocean by an engine driven by such a volatile fluid, no other energy being used but the heat abstracted from the water. But the amount of power which could be obtained in this manner would be, without further provision, very small.

Electricity produced by natural causes is another source of energy which might be rendered available. Lightning discharges involve great amounts of electrical energy, which we could utilize by transforming and storing it. Some years ago I made known a method of electrical transformation which renders the first part of this task easy, but the storing of the energy of lightning discharges will be difficult to accomplish. It is well known, furthermore, that electric currents circulate constantly through the earth, and that there exists between the earth and any air stratum a difference of electrical pressure, which varies in proportion to the height.

In recent experiments I have discovered two novel facts of importance in this connection. One of these facts is that an electric current is generated in a wire extending from the ground to a great height by the axial, and probably also by the translatory, movement of the earth. No appreciable current, however, will flow continuously in the wire unless the electricity is allowed to leak out into the air. Its escape is greatly facilitated by providing at the elevated end of the wire a conducting terminal of great surface, with many sharp edges or points. We are thus enabled to get a continuous supply of electrical energy by merely supporting a wire at a height, but, unfortunately, the amount of electricity which can be so obtained is small.

The second fact which I have ascertained is that the upper air strata are permanently charged with electricity opposite to that of the earth. So, at least, I have interpreted my observations, from which it appears that the earth, with its adjacent insulating and outer conducting envelope, constitutes a highly charged electrical condenser containing, in all probability, a great amount of electrical energy which might be turned to the uses of man, if it were possible to reach with a wire to great altitudes.

It is possible, and even probable, that there will be, in time, other resources of energy opened up, of which we have no knowledge now. We may even find ways of applying forces such as magnetism or gravity for driving machinery without using any other means. Such realizations, though highly improbable, are not impossible. An example will best convey an idea of what we can hope to attain and what we can never attain. Imagine a disk of some homogeneous material turned perfectly true and arranged to turn in frictionless bearings on a horizontal shaft above the ground. This disk, being under the above conditions perfectly balanced, would rest in any position. Now, it is possible that we may learn how to make such a disk rotate continuously and perform work by the force of gravity without any further effort on our part; but it is perfectly impossible for the disk to turn and to do work without any force from the outside. If it could do so, it would be what is designated scientifically as a “perpetuum mobile,” a machine creating its own motive power. To make the disk rotate by the force of gravity we have only to invent a screen against this force. By such a screen we could prevent this force from acting on one half of the disk, and the rotation of the latter would follow. At least, we cannot deny such a possibility until we know exactly the nature of the force of gravity. Suppose that this force were due to a movement comparable to that of a stream of air passing from above toward the center of the earth. The effect of such a stream upon both halves of the disk would be equal, and the latter would not rotate ordinarily; but if one half should be guarded by a plate arresting the movement, then it would turn.


When I began the investigation of the subject under consideration, and when the preceding or similar ideas presented themselves to me for the first time, though I was then unacquainted with a number of the facts mentioned, a survey of the various ways of utilizing the energy of the medium convinced me, nevertheless, that to arrive at a thoroughly satisfactory practical solution a radical departure from the methods then known had to be made. The windmill, the solar engine, the engine driven by terrestrial heat, had their limitations in the amount of power obtainable. Some new way had to be discovered which would enable us to get more energy. There was enough heat-energy in the medium, but only a small part of it was available for the operation of an engine in the ways then known. Besides, the energy was obtainable only at a very slow rate. Clearly, then, the problem was to discover some new method which would make it possible both to utilize more of the heat-energy of the medium and also to draw it away from the same at a more rapid rate.

I was vainly endeavoring to form an idea of how this might be accomplished, when I read some statements from Carnot and Lord Kelvin (then Sir William Thomson) which meant virtually that it is impossible for an inanimate mechanism or self-acting machine to cool a portion of the medium below the temperature of the surrounding, and operate by the heat abstracted. These statements interested me intensely. Evidently a living being could do this very thing, and since the experiences of my early life which I have related had convinced me that a living being is only an automaton, or, otherwise stated, a “self-acting-engine,” I came to the conclusion that it was possible to construct a machine which would do the same. As the first step toward this realization I conceived the following mechanism. Imagine a thermopile consisting of a number of bars of metal extending from the earth to the outer space beyond the atmosphere. The heat from below, conducted upward along these metal bars, would cool the earth or the sea or the air, according to the location of the lower parts of the bars, and the result, as is well known, would be an electric current circulating in these bars. The two terminals of the thermopile could now be joined through an electric motor, and, theoretically, this motor would run on and on, until the media below would be cooled down to the temperature of the outer space. This would be an inanimate engine which, to all evidence, would be cooling a portion of the medium below the temperature of the surrounding, and operating by the heat abstracted.

A, medium with little energy; B, B, ambient medium with much energy; O, path of the energy.

But was it not possible to realize a similar condition without necessarily going to a height? Conceive, for the sake of illustration, [a cylindrical] enclosure T, as illustrated in diagram b, such that energy could not be transferred across it except through a channel or path O, and that, by some means or other, in this enclosure a medium were maintained which would have little energy, and that on the outer side of the same there would be the ordinary ambient medium with much energy. Under these assumptions the energy would flow through the path O, as indicated by the arrow, and might then be converted on its passage into some other form of energy. The question was, Could such a condition be attained? Could we produce artificially such a “sink” for the energy of the ambient medium to flow in? Suppose that an extremely low temperature could be maintained by some process in a given space; the surrounding medium would then be compelled to give off heat, which could be converted into mechanical or other form of energy, and utilized. By realizing such a plan, we should be enabled to get at any point of the globe a continuous supply of energy, day and night. More than this, reasoning in the abstract, it would seem possible to cause a quick circulation of the medium, and thus draw the energy at a very rapid rate.

Here, then, was an idea which, if realizable, afforded a happy solution of the problem of getting energy from the medium. But was it realizable? I convinced myself that it was so in a number of ways, of which one is the following. As regards heat, we are at a high level, which may be represented by the surface of a mountain lake considerably above the sea, the level of which may mark the absolute zero of temperature existing in the interstellar space. Heat, like water, flows from high to low level, and, consequently, just as we can let the water of the lake run down to the sea, so we are able to let heat from the earth’s surface travel up into the cold region above. Heat, like water, can perform work in flowing down, and if we had any doubt as to whether we could derive energy from the medium by means of a thermopile, as before described, it would be dispelled by this analogue. But can we produce cold in a given portion of the space and cause the heat to flow in continually? To create such a “sink,” or “cold hole,” as we might say, in the medium, would be equivalent to producing in the lake a space either empty or filled with something much lighter than water. This we could do by placing in the lake a tank, and pumping all the water out of the latter. We know, then, that the water, if allowed to flow back into the tank, would, theoretically, be able to perform exactly the same amount of work which was used in pumping it out, but not a bit more. Consequently nothing could be gained in this double operation of first raising the water and then letting it fall down. This would mean that it is impossible to create such a sink in the medium. But let us reflect a moment. Heat, though following certain general laws of mechanics, like a fluid, is not such; it is energy which may be converted into other forms of energy as it passes from a high to a low level. To make our mechanical analogy complete and true, we must, therefore, assume that the water, in its passage into the tank, is converted into something else, which may be taken out of it without using any, or by using very little, power. For example, if heat be represented in this analogue by the water of the lake, the oxygen and hydrogen composing the water may illustrate other forms of energy into which the heat is transformed in passing from hot to cold. If the process of heat transformation were absolutely perfect, no heat at all would arrive at the low level, since all of it would be converted into other forms of energy. Corresponding to this ideal case, all the water flowing into the tank would be decomposed into oxygen and hydrogen before reaching the bottom, and the result would be that water would continually flow in, and yet the tank would remain entirely empty, the gases formed escaping. We would thus produce, by expending initially a certain amount of work to create a sink for the heat or, respectively, the water to flow in, a condition enabling us to get any amount of energy without further effort. This would be an ideal way of obtaining motive power. We do not know of any such absolutely perfect process of heat-conversion, and consequently some heat will generally reach the low level, which means to say, in our mechanical analogue, that some water will arrive at the bottom of the tank, and a gradual and slow filling of the latter will take place, necessitating continuous pumping out. But evidently there will be less to pump out than flows in, or, in other words, less energy will be needed to maintain the initial condition than is developed by the fall, and this is to say that some energy will be gained from the medium. What is not converted in flowing down can just be raised up with its own energy, and what is converted is clear gain. Thus the virtue of the principle I have discovered resides wholly in the conversion of the energy on the downward flow.