The Problem of Increasing Human Energy – Nikola Tesla


As the first valuable result of my experiments in this latter line a system of telegraphy without wires resulted, which I described in two scientific lectures in February and March, 1893. It is mechanically illustrated in diagram c, the upper part of which shows the electrical arrangement as I described it then, while the lower part illustrates its mechanical analogue. The system is extremely simple in principle. Imagine two tuning-forks F, F1, one at the sending- and the other at the receiving-station respectively, each having attached to its lower prong a minute piston p, fitting in a cylinder. Both the cylinders communicate with a large reservoir R, with elastic walls, which is supposed to be closed and filled with a light and incompressible fluid. By striking repeatedly one of the prongs of the tuning-fork F, the small piston p below would be vibrated, and its vibrations, transmitted through the fluid, would reach the distant fork F1, which is “tuned” to the fork F, or, stated otherwise, of exactly the same note as the latter. The fork F1 would now be set vibrating, and its vibration would be intensified by the continued action of the distant fork F until its upper prong, swinging far out, would make an electrical connection with a stationary contact c”, starting in this manner some electrical or other appliances which may be used for recording the signals. In this simple way messages could be exchanged between the two stations, a similar contact c’ being provided for this purpose, close to the upper prong of the fork F, so that the apparatus at each station could be employed in turn as receiver and transmitter.


The electrical system illustrated in the upper figure of diagram c is exactly the same in principle, the two wires or circuits ESP and E1S1P1, which extend vertically to a height, representing the two tuning- forks with the pistons attached to them. These circuits are connected with the ground by plates E, E1, and to two elevated metal sheets P, P1, which store electricity and thus magnify considerably the effect. The closed reservoir R, with elastic walls, is in this case replaced by the earth, and the fluid by electricity. Both of these circuits are “tuned” and operate just like the two tuning-forks. Instead of striking the fork F at the sending-station, electrical oscillations are produced in the vertical sending- or transmitting-wire ESP, as by the action of a source S, included in this wire, which spread through the ground and reach the distant vertical receiving-wire E1S1P1, exciting corresponding electrical oscillations in the same. In the latter wire or circuit is included a sensitive device or receiver S1, which is thus set in action and made to operate a relay or other appliance. Each station is, of course, provided both with a source of electrical oscillations S and a sensitive receiver S1, and a simple provision is made for using each of the two wires alternately to send and to receive the messages.

[Nikola Tesla: Springs Notes, page 326, Photograph V]


The picture shows a number of coils, differently attuned and responding to the vibrations transmitted to them through the earth from an electrical oscillator. The large coil on the right, discharging strongly, is tuned to the fundamental vibration, which is fifty thousand per second; the two larger vertical coils to twice that number; the smaller white wire coil to four times that number, and the remaining small coils to higher tones. The vibrations produced by the oscillator were so intense that they affected perceptibly a small coil tuned to the twenty-sixth higher tone.

The exact attunement of the two circuits secures great advantages, and, in fact, it is essential in the practical use of the system. In this respect many popular errors exist, and, as a rule, in the technical reports on this subject circuits and appliances are described as affording these advantages when from their very nature it is evident that this is impossible. In order to attain the best results it is essential that the length of each wire or circuit, from the ground connection to the top, should be equal to one quarter of the wave-length of the electrical vibration in the wire, or else equal to that length multiplied by an odd number. Without the observation of this rule it is virtually impossible to prevent the interference and insure the privacy of messages. Therein lies the secret of tuning. To obtain the most satisfactory results it is, however, necessary to resort to electrical vibrations of low pitch. The Hertzian spark apparatus, used generally by experimenters, which produces oscillations of a very high rate, permits no effective tuning, and slight disturbances are sufficient to render an exchange of messages impracticable.But scientifically designed, efficient appliances allow nearly perfect adjustment.An experiment performed with the improved apparatus repeatedly referred to, and intended to convey an idea of this feature, is illustrated in Fig. 5, which is sufficiently explained by its note.

Since I described these simple principles of telegraphy without wires I have had frequent occasion to note that the identical features and elements have been used, in the evident belief that the signals are being transmitted to considerable distance by “Hertzian” radiations. This is only one of many misapprehensions to which the investigations of the lamented physicist have given rise. About thirty- three years ago Maxwell, following up a suggestive experiment made by Faraday in 1845, evolved an ideally simple theory which intimately connected light, radiant heat, and electrical phenomena, interpreting them as being all due to vibrations of a hypothetical fluid of inconceivable tenuity, called the ether. No experimental verification was arrived at until Hertz, at the suggestion of Helmholtz, undertook a series of experiments to this effect. Hertz proceeded with extraordinary ingenuity and insight, but devoted little energy to the perfection of his old-fashioned apparatus. The consequence was that he failed to observe the important function which the air played in his experiments, and which I subsequently discovered. Repeating his experiments and reaching different results, I ventured to point out this oversight. The strength of the proofs brought forward by Hertz in support of Maxwell’s theory resided in the correct estimate of the rates of vibration of the circuits he used. But I ascertained that he could not have obtained the rates he thought he was getting. The vibrations with identical apparatus he employed are, as a rule, much slower, this being due to the presence of air, which produces a dampening effect upon a rapidly vibrating electric circuit of high pressure, as a fluid does upon a vibrating tuning-fork. I have, however, discovered since that time other causes of error, and I have long ago ceased to look upon his results as being an experimental verification of the poetical conceptions of Maxwell. The work of the great German physicist has acted as an immense stimulus to contemporary electrical research, but it has likewise, in a measure, by its fascination, paralyzed the scientific mind, and thus hampered independent inquiry.Every new phenomenon which was discovered was made to fit the theory, and so very often the truth has been unconsciously distorted.

When I advanced this system of telegraphy, my mind was dominated by the idea of effecting communication to any distance through the earth or environing medium, the practical consummation of which I considered of transcendent importance, chiefly on account of the moral effect which it could not fail to produce universally. As the first effort to this end I proposed at that time, to employ relay- stations with tuned circuits, in the hope of making thus practicable signaling over vast distances, even with apparatus of very moderate power then at my command. I was confident, however, that with properly designed machinery signals could be transmitted to any point of the globe, no matter what the distance, without the necessity of using such intermediate stations. I gained this conviction through the discovery of a singular electrical phenomenon, which I described early in 1892, in lectures I delivered before some scientific societies abroad, and which I have called a “rotating brush.” This is a bundle of light which is formed, under certain conditions, in a vacuum-bulb, and which is of a sensitiveness to magnetic and electric influences bordering, so to speak, on the supernatural. This light-bundle is rapidly rotated by the earth’s magnetism as many as twenty thousand times pre second, the rotation in these parts being opposite to what it would be in the southern hemisphere, while in the region of the magnetic equator it should not rotate at all. In its most sensitive state, which is difficult to obtain, it is responsive to electric or magnetic influences to an incredible degree. The mere stiffening of the muscles of the arm and consequent slight electrical change in the body of an observer standing at some distance from it, will perceptibly affect it. When in this highly sensitive state it is capable of indicating the slightest magnetic and electric changes taking place in the earth. The observation of this wonderful phenomenon impressed me strongly that communication at any distance could be easily effected by its means, provided that apparatus could be perfected capable of producing an electric or magnetic change of state, however small, in the terrestrial globe or environing medium.


I resolved to concentrate my efforts upon this venturesome task, though it involved great sacrifice, for the difficulties to be mastered were such that I could hope to consummate it only after years of labor. It meant delay of other work to which I would have preferred to devote myself, but I gained the conviction that my energies could not be more usefully employed; for I recognized that an efficient apparatus for, the production of powerful electrical oscillations, as was needed for that specific purpose, was the key to the solution of other most important electrical and, in fact, human problems. Not only was communication, to any distance, without wires possible by its means, but, likewise, the transmission of energy in great amounts, the burning of the atmospheric nitrogen, the production of an efficient illuminant, and many other results of inestimable scientific and industrial value. Finally, however, I had the satisfaction of accomplishing the task undertaken by the use of a new principle, the virtue of which is based on the marvelous properties of the electrical condenser. One of these is that it can discharge or explode its stored energy in an inconceivably short time. Owing to this it is unequaled in explosive violence. The explosion of dynamite is only the breath of a consumptive compared with its discharge. It is the means of producing the strongest current, the highest electrical pressure, the greatest commotion in the medium. Another of its properties, equally valuable, is that its discharge may vibrate at any rate desired up to many millions per second.

[Nikola Tesla: Colorado Springs Notes, page 324, Photograph III.]


I had arrived at the limit of rates obtainable in other ways when the happy idea presented itself to me to resort to the condenser. I arranged such an instrument so as to be charged and discharged alternately in rapid succession through a coil with a few turns of stout wire, forming the primary of a transformer or induction-coil. Each time the condenser was discharged the current would quiver in the primary wire and induce corresponding oscillations in the secondary. Thus a transformer or induction- coil on new principles was evolved, which I have called “the electrical oscillator,” partaking of those unique qualities which characterize the condenser, and enabling results to be attained impossible by other means. Electrical effects of any desired character and of intensities undreamed of before are now easily producible by perfected apparatus of this kind, to which frequent reference has been made, and the essential parts of which are shown in Fig. 6. For certain purposes a strong inductive effect is required; for others the greatest possible suddenness; for others again, an exceptionally high rate of vibration or extreme pressure; while for certain other objects immense electrical movements are necessary. The photographs in Figs. 7, 8, 9, and 10, of experiments performed with such an oscillator, may serve to illustrate some of these features and convey an idea of the magnitude of the effects actually produced. The completeness of the titles of the figures referred to makes a further description of them unnecessary.

[Nikola Tesla: Colorado Springs Notes, page 344, Photograph XVII.]

The photograph shows three ordinary incandescent lamps lighted to full candle-power by currents induced in a local loop consisting of a single wire forming a square of fifty feet each side, which includes the lamps, and which is at a distance of one hundred feet from the primary circuit energized by the oscillator. The loop likewise includes an electrical condenser, and is exactly attuned to the vibrations of the oscillator, which is worked at less than five percent of its total capacity.

[Nikola Tesla: Colorado Springs Notes, page 335, Photograph XI.]

Note to Fig. 8.—The coil, partly shown in the photograph, creates an alternative movement of electricity from the earth into a large reservoir and back at a rate of one hundred thousand alternations per second. The adjustments are such that the reservoir is filled full and bursts at each alternation just at the moment when the electrical pressure reaches the maximum. The discharge escapes with a deafening noise, striking an unconnected coil twenty-two feet away, and creating such a commotion of electricity in the earth that sparks an inch long can be drawn from a water main at a distance of three hundred feet from the laboratory.

Nikola Tesla: Colorado Springs Notes, page 390, Photograph LXII.

The ball shown in the photograph, covered with a polished metallic coating of twenty square feet of surface, represents a large reservoir of electricity, and the inverted tin pan underneath, with a sharp rim, a big opening through which the electricity can escape before filling the reservoir. The quantity of electricity set in movement is so great that, although most of it escapes through the rim of the pan or opening provided, the ball or reservoir is nevertheless alternately emptied and filled to over-flowing (as is evident from the discharge escaping on the top of the ball) one hundred and fifty thousand times per second.

Nikola Tesla: Colorado Springs Notes, page 332, Photograph IX.

However extraordinary the results shown may appear, they are but trifling compared with those which are attainable by apparatus designed on these same principles. I have produced electrical discharges the actual path of which, from end to end, was probably more than one hundred feet long; but it would not be difficult to reach lengths one hundred times as great. I have produced electrical movements occurring at the rate of approximately one hundred thousand horse-power, but rates of one, five, or ten million horse-power are easily practicable. In these experiments effects were developed incomparably greater than any ever produced by human agencies, and yet these results are but an embryo of what is to be.

The discharge, creating a strong draft owing to the heating of the air, is carried upward through the open roof of the building. The greatest width across is nearly seventy feet. The pressure is over twelve million volts, and the current alternates one hundred and thirty thousand times per second.

That communication without wires to any point of the globe is practicable with such apparatus would need no demonstration, but through a discovery which I made I obtained absolute certitude. Popularly explained, it is exactly this: When we raise the voice and hear an echo in reply, we know that the sound of the voice must have reached a distant wall, or boundary, and must have been reflected from the same. Exactly as the sound, so an electrical wave is reflected, and the same evidence which is afforded by an echo is offered by an electrical phenomenon known as a “stationary” wave—that is, a wave with fixed nodal and ventral regions. Instead of sending sound-vibrations toward a distant wall, I have sent electrical vibrations toward the remote boundaries of the earth, and instead of the wall the earth has replied. In place of an echo I have obtained a stationary electrical wave, a wave reflected from afar.

Stationary waves in the earth mean something more than mere telegraphy without wires to any distance. They will enable us to attain many important specific results impossible otherwise. For instance, by their use we may produce at will, from a sending-station, an electrical effect in any particular region of the globe; we may determine the relative position or course of a moving object, such as a vessel at sea, the distance traversed by the same, or its speed; or we may send over the earth a wave of electricity traveling at any rate we desire, from the pace of a turtle up to lightning speed.

With these developments we have every reason to anticipate that in a time not very distant most telegraphic messages across the oceans will be transmitted without cables. For short distances we need a “wireless” telephone, which requires no expert operators. The greater the spaces to be bridged, the more rational becomes communication without wires. The cable is not only an easily damaged and costly instrument, but it limits us in the speed of transmission by reason of a certain electrical property inseparable from its construction. A properly designed plant for effecting communication without wires ought to have many times the working capacity of a cable, while it will involve incomparably less expense. Not a long time will pass, I believe, before communication by cable will become obsolete, for not only will signaling by this new method be quicker and cheaper, but also much safer. By using some new means for isolating the messages which I have contrived, an almost perfect privacy can be secured.

I have observed the above effects so far only up to a limited distance of about six hundred miles, but inasmuch as there is virtually no limit to the power of the vibrations producible with such an oscillator, I feel quite confident of the success of such a plant for effecting transoceanic communication. Nor is this all. My measurements and calculations have shown that it is perfectly practicable to produce on our globe, by the use of these principles, an electrical movement of such magnitude that, without the slightest doubt, its effect will be perceptible on some of our nearer planets, as Venus and Mars. Thus from mere possibility interplanetary communication has entered the stage of probability. In fact, that we can produce a distinct effect on one of these planets in this novel manner, namely, by disturbing the electrical condition of the earth, is beyond any doubt. This way of effecting such communication is, however, essentially different from all others which have so far been proposed by scientific men. In all the previous instances only a minute fraction of the total energy reaching the planet—as much as it would be possible to concentrate in a reflector—could be utilized by the supposed observer in his instrument. But by the means I have developed he would be enabled to concentrate the larger portion of the entire energy transmitted to the planet in his instrument, and the chances of affecting the latter are thereby increased many million fold.

Besides machinery for producing vibrations of the required power, we must have delicate means capable of revealing the effects of feeble influences exerted upon the earth. For such purposes, too, I have perfected new methods. By their use we shall likewise be able, among other things, to detect at considerable distance the presence of an iceberg or other object at sea. By their use, also, I have discovered some terrestrial phenomena still unexplained. That we can send a message to a planet is certain, that we can get an answer is probable: man is not the only being in the Infinite gifted with a mind.